Synthetic studies of nucleoside antibiotics: a formal synthesis of (+)-sinefungin

Arun K. Ghosh * and Yong Wang
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA

Received (in Cambridge, UK) 7th September 1999, Accepted 12th October 1999

Abstract

A formal synthesis of $(+)$-sinefungin $\mathbf{1}$ is described. The C-6' and C-9' stereogenic centers of sinefungin were constructed stereoselectively by efficient catalytic asymmetric syntheses. The key strategy for the construction of the C-6' stereocenter involves alkylation of a protected ribose-derived triflate with alkynyl-lithium, Sharpless asymmetric epoxidation of the corresponding allylic alcohol followed by a regioselective epoxide-ring opening with diisopropoxytitanium diazide. The C-9 amino acid stereochemistry was established by a rhodium chiral bisphosphine-catalyzed asymmetric hydrogenation of an α-(acylamino)acrylate derivative. The resulting amino acid derivative has been previously converted to $(+)$-sinefungin 1.

Sinefungin 1, a novel nucleoside antibiotic isolated from Streptomyces grisoleus, ${ }^{1}$ has shown many important biological properties including antifungal, antitumor, antiparasitic and antiviral activities. ${ }^{2}$ The biological properties of sinefungin stem from inhibition of the S-adenoylmethionine (SAM)dependent methyl transferase enzymes. ${ }^{3}$ Clinical use of natural sinefungin is restricted because of its severe in vivo toxicity. ${ }^{4}$ Thus, total synthesis, structural modifications and biology of sinefungin derivatives have become the subject of much interest over the years. A number of total syntheses of sinefungin have been reported incorporating various strategies for stereocontrol at the C-6' asymmetric center. ${ }^{5,6}$ The synthetic efforts towards sinefungin subsequently led to the preparation of several structural analogues of sinefungin. ${ }^{7}$ Recently, we have described a stereoselective synthesis of sinefungin in which both the C-6' and C-9' remote chiral centers were constructed by asymmetric syntheses. ${ }^{8}$ As part of our continuing interest in sinefungin chemistry, we have now devised a stereocontrolled route to a sinefungin intermediate which has been previously converted to sinefungin by us. The key steps involve an efficient carbon-carbon bond formation between a protected ribosederived triflate and an alkynyl-lithium, Sharpless asymmetric epoxidation of the corresponding allylic alcohol, followed by a regio- and stereoselective epoxide-ring-opening reaction. The C-9' amino acid stereochemistry was established by an asymmetric hydrogenation of the corresponding α-(acylamino)acrylate derivative.

Results and discussion

As shown in Scheme 1, the known ${ }^{9}$ methyl glycoside 2 was readily converted to prop-1-ynyl (propargyl) derivative 3. The

Scheme 1 Reagents, conditions (and yields): (a) $\mathrm{Tf}_{2} \mathrm{O}$, 2,6-lutidine, -78 to $23^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) TBDMSOCH ${ }_{2} \mathrm{C} \equiv \mathrm{CLi}$, THF, DMPU, -78 to $-20^{\circ} \mathrm{C}, 2 \mathrm{~h}(86 \%)$; (c) $n-\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (d) LAH, THF, $50^{\circ} \mathrm{C}, 2 \mathrm{~h}(77 \%)$; (e) ${ }^{\mathrm{h}} \mathrm{BuOOH}, \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4},(+)-\mathrm{DET}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-23^{\circ} \mathrm{C}$, $24 \mathrm{~h}(88 \%)$; (f) $\mathrm{Ti}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}, \mathrm{PhH}, 75^{\circ} \mathrm{C}, 15 \mathrm{~min}(95 \%)$.
required carbon-carbon bond formation was accomplished by the reaction of the $5^{\prime}-O$-triflate of the methyl glycoside $\mathbf{2}$ and the prop-2-ynyloxysilane-derived alkynyl-lithium ${ }^{\text {' }} \mathrm{BuMe}_{2}$ $\mathrm{SiOCH}_{2} \mathrm{C}=\mathrm{CLi}$ which proceeded smoothly in THF in the presence of 1,3-dimethylpropyleneurea (DMPU) at -78 to $-20^{\circ} \mathrm{C}$ and after 2 h provided the alkyne derivative 3 in 86% yield. The use of HMPA instead of DMPU resulted in significantly lower yield (55%). ${ }^{10}$ The removal of the TBDMS group by treatment with $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF at $0^{\circ} \mathrm{C}$, followed by LAH reduction of the resulting alkyne in THF at $50^{\circ} \mathrm{C}$ for 2 h , furnished exclusively the E-allylic alcohol 4 in 77% yield. Sharpless asymmetric epoxidation of 4 with (+)-diethyl

Scheme 2 Reagents, conditions (and yields): (a) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$ $\mathrm{MeOH}, 6 \mathrm{~h}$; (b) $\mathrm{CbzCl}, \mathrm{NaHCO}_{3}, 23^{\circ} \mathrm{C}, 12 \mathrm{~h}(90 \%)$; (c) $\mathrm{Ph}_{2} \mathrm{PCl}$, imidazole, $\mathrm{I}_{2}, \mathrm{PhMe}-\mathrm{MeCN}(2: 1), 90^{\circ} \mathrm{C}, 4 \mathrm{~h}(69 \%)$; (d) $\mathrm{NaH}, \mathrm{PhCH}_{2} \mathrm{Br}$, n - $\mathrm{Bu}_{4} \mathrm{NI}$ (cat.), THF, $23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}\left(99 \%\right.$); (e) $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF}, 23^{\circ} \mathrm{C}$, 1 h ; then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}\left(57 \%\right.$); (f) DMSO, (COC1) $2, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $-50{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; then ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$; (g) (TMS) ${ }_{2} \mathrm{NK}$, THF, 18-crown-6, $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{NHAc}) \mathrm{CO}_{2} \mathrm{Et},-78$ to $23^{\circ} \mathrm{C}, 1 \mathrm{~h}(79 \%)$; (h) H_{2}, $\left[\mathrm{Rh}(\mathrm{COD})(R, R \text {-DIPAMP })_{2}\right] \mathrm{BF}_{4}, 50 \mathrm{psi}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 12 \mathrm{~h}(94 \%)$.

L-tartrate [(+)-DET] at $-23^{\circ} \mathrm{C}$ over 24 h provided the synepoxide 5 stereoselectively (diastereomeric ratio 96:4 by 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) in 88% yield. ${ }^{11}$ Whereas the MCPBA epoxidation of a ribose-derived allylic alcohol bearing an allylic asymmetric center can provide excellent stereocontrol, the epoxidation of allylic alcohol 4 containing a more remote chiral center resulted in a $2: 1$ mixture of diastereomers. ${ }^{12}$ To install the C-6' amine functionality, epoxide 5 was exposed to a regioand stereoselective azide-induced opening reaction as described by Sharpless and co-workers. ${ }^{13}$ Thus, treatment of epoxide 5 with diisopropoxytitanium(Iv) diazide in benzene at $75^{\circ} \mathrm{C}$ for 15 min afforded the azido diols 6 and 7 as an inseparable mixture (19:1) in 95% combined yield. This mixture was subjected to catalytic hydrogenation over $10 \% \mathrm{Pd}-\mathrm{C}$ and the resulting amines were treated with benzyl chloroformate in the presence of aq. NaHCO_{3} to afford the Cbz -derivative 8, after silica gel chromatography (Scheme 2). The vicinal diol functionality of $\mathbf{8}$ was transformed into the corresponding olefin by reaction with chlorodiphenylphosphine, imidazole and iodine in a mixture of toluene and acetonitrile $(2: 1)$ at $90^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{14}$ The olefin 9 was obtained in 69% yield after silica gel chromatography. As described previously, the protec-
tion of the urethane NH is necessary for anomeric adenosylation. ${ }^{8}$ Thus, reaction of 9 with sodium hydride and benzyl bromide in the presence of a catalytic amount of $n-\mathrm{Bu}_{4} \mathrm{NI}$ furnished the N-benzylurethane 10 in 99% yield

The olefin $\mathbf{1 0}$ was hydroborated with borane in THF to furnish alcohol $\mathbf{1 1}$ after oxidative work-up with alkaline hydrogen peroxide. Swern oxidation of 11, followed by immediate exposure of the resulting aldehyde to a Horner-Emmons olefination with the enolate derived from ethyl N-acetyl- α-(diethoxyphosphoryl)glycinate ${ }^{15}$ and potassium bis(trimethylsilyl)amide in THF at -78 to $23^{\circ} \mathrm{C}$ for 1 h , afforded a 1:5.4 mixture of E and Z-enamide 12 and 13 in 79% yield (from 11). This procedure is operationally simple and provided an improvement of yield over the previous conditions. ${ }^{8}$ It has been previously demonstrated that (cycloocta-1,5-diene) $-[(R, R)$-1,2-ethanediylbis[(O-methoxyphenyl)phenylphosphine $]$]rhodium tetrafluoroborate $\left[\left[\mathrm{Rh}(\mathrm{COD})(R, R \text {-DIPAMP })_{2}\right]^{+} \mathrm{BF}_{4}{ }^{-}\right]$catalyst converts both E - and Z-enamides to an (S)- α-amino acid enantioselectively. ${ }^{16}$ The E and Z isomers $\mathbf{1 2}$ and $\mathbf{1 3}$ were then exposed to asymmetric hydrogenation in the presence of $[\mathrm{Rh}(\mathrm{COD})(R, R-$ DIPAMP $\left.)_{2}\right]^{+} \mathrm{BF}_{4}{ }^{-}(10 \mathrm{~mol} \%)$ catalyst ${ }^{17}$ in methanol under 50 psi hydrogen pressure at $23^{\circ} \mathrm{C}$ for 12 h to establish the $\mathrm{C}-9^{\prime}$ stereocenter ($9 S$-isomer) stereoselectively. The amino acid derivative $\mathbf{1 4}\left\{[\alpha]_{D}^{23}+22.6, \dagger\left(c 1.33, \mathrm{CHCl}_{3}\right)\right\}$ was isolated in 94% yield. The physical characteristics of the amino acid derivative 14 are identical with the sample made by us previously. ${ }^{8}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ revealed the presence of a $4: 1$ mixture of rotational isomers; however, at coalescence temperature $\left(T_{\mathrm{c}} \approx 70^{\circ} \mathrm{C}\right.$ in DMSO- $\left.d_{6}\right)$ the mixture of peaks merged into one sharp spectrum. The methyl glycoside $\mathbf{1 4}$ has been previously converted to $(+)$-sinefungin by us. ${ }^{8}$ The sequence of reactions involved the removal of isopropylidene protection and the methyl acetal by treatment with aq. HCl in 1,4-dioxane, followed by reaction of the triol with acetic anhydride in pyridine to provide the triacetate (70%). Anomeric adenosylation with bis-silyl- N-benzoyladenine and TMSOTf afforded the corresponding β-nucleoside (93%). Finally, removal of various protecting groups by a one-pot, three-step procedure involving: (1) reaction with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH ; (2) removal of methanol and exposure to aq. hydrazine and, (3) catalytic hydrogenation over Pearlman's catalyst $\left[20 \% \mathrm{Pd}(\mathrm{OH})_{2}\right.$ on carbon] provided $(+)$-sinefungin 1 after silica gel chromatography $(72 \%) .{ }^{8}$

Thus a formal stereoselective synthesis of $(+)$-sinefungin has been accomplished. Our approach utilizes an efficient chain elongation of a protected ribose derivative, Sharpless epoxidation, regio- and stereoselective epoxide opening, and an efficient catalytic hydrogenation. The synthesis is amenable to the preparation of a variety of sinefungin analogues for further biological studies.

Experimental

All mps were recorded on a Thomas-Hoover capillary melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AM-400, DPX-400, DRX500, and Varian VXR-300S spectrometers using tetramethylsilane as the internal standard. IR spectra were recorded on a Matteson Genesis FT-IR spectrometer. Mass spectra were recorded on a Finnigan LCQ mass spectrometer. Optical rotations were measured on a Perkin-Elmer 241 spectropolarimeter. \dagger Anhydrous solvents were obtained as follows: dichloromethane and benzene, distillation from $\mathrm{CaH}_{2} ; \mathrm{THF}$, distillation from sodium and benzophenone. All other solvents were HPLC grade. Column chromatography was performed with Whatman 240-400 mesh silica gel under a low positive pressure of 5-10 psi. \ddagger TLC was carried out with E. Merck silica gel 60-F-254 plates.

[^0]$\ddagger 1 \mathrm{psi}=6894.7 \mathrm{~Pa}$.

Methyl 8-O-(tert-butyldimethylsilyl)-5,6,7-trideoxy-2,3-O-iso-propylidene- β-D-ribo-oct- 6 -ynofuranoside 3
To a stirred solution of tert-butyldimethyl(prop-2-ynyloxy)silane ($6.30 \mathrm{~g}, 36.9 \mathrm{mmol}$) in THF (20 mL) at $-78^{\circ} \mathrm{C}$ was added n-BuLi ($23 \mathrm{~mL}, 36.9 \mathrm{mmol} ; 1.6 \mathrm{M}$ in hexane) dropwise under nitrogen atmosphere. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred at this temperature for an additional 2 h before use in the following alkylation step.
In a separate flask, a solution of 2,6-dimethylpyridine (2,6lutidine) ($1.6 \mathrm{~mL}, 13.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at $-78^{\circ} \mathrm{C}$ and $\mathrm{Tf}_{2} \mathrm{O}(2.2 \mathrm{~mL}, 12.9 \mathrm{mmol})$ was added dropwise over a period of 5 min . The resulting green solution was stirred for 5 min and a solution of alcohol $2(2.51 \mathrm{~g}, 12.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$ was added. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the cooling bath was removed, and the mixture was allowed to warm to $23^{\circ} \mathrm{C}$. The mixture was evaporated under reduced pressure and the residue was dissolved in a mixture of THF and DMPU ($2: 1 ; 15 \mathrm{~mL}$). The resulting solution was cooled to $-78^{\circ} \mathrm{C}$. The above alkynyl-lithium solution was taken up in a syringe and was added to the triflate solution dropwise over a period of 5 min . Stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h and the reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred at this temperature for an additional 1 h . The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution was allowed to warm to $23^{\circ} \mathrm{C}$. The reaction mixture was thoroughly extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was chromatographed on silica gel (10% EtOAc-hexanes) to afford 3 ($R_{\mathrm{f}} 0.85,25 \% \mathrm{EtOAc}$-hexanes) as a colorless oil (3.74 g , $86 \%) ;[a]_{\mathrm{D}}^{23}-46\left(c 2.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz})$, 4.30-4.22(m, 3 H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.44$ ($\mathrm{s}, 3 \mathrm{H}$), 1.28 (s, 3 H), 0.88 ($\mathrm{s}, 9 \mathrm{H}$), 0.08 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 112.1,109.6,85.1,85.1,83.2,80.7,80.5$, 54.6, 51.7, 26.2, 25.7, 24.8, 24.8, 18.2, -5.3; MS (CI) m/z 355 $\left(\mathrm{M}^{+}-\mathrm{H}\right), 325\left(\mathrm{M}^{+}-\mathrm{OMe}\right)\left(\right.$ Calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 60.64$; H, 9.05%. Found: C, 60.56 ; H, 9.08).

Methyl 5,6,7-trideoxy-2,3-O-isopropylidene- β-d-ribo-oct-6-enofuranoside 4

To a stirred solution of $\mathbf{3}(3.47 \mathrm{~g}, 9.73 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of $n-\mathrm{Bu}_{4} \mathrm{NF}(12 \mathrm{~mL}, 12.0 \mathrm{mmol} ; 1 \mathrm{M}$ in THF). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then the reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to afford the crude alcohol which was used directly in the following procedure without further purification.

The above alcohol in THF (5 mL) was added dropwise over a period of 5 min to a stirred suspension of LAH $(1.90 \mathrm{~g}, 50.0$ $\mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 2 h . After this period, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and excess of LAH was destroyed by the dropwise addition of EtOAc. Saturated aq. NaHCO_{3} was then added dropwise. The resulting white suspension was filtered through a pad of Celite and the latter was washed with EtOAc. The filtrate was evaporated to give a residue, which was chromatographed over silica gel (25% EtOAc-hexanes) to afford the desired alcohol $4\left(R_{\mathrm{f}} 0.33,50 \%\right.$ EtOAc-hexanes) as a colorless oil ($1.82 \mathrm{~g}, 77 \%$); $[a]_{\mathrm{D}}^{23}-42\left(c 2.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 5.80-5.64(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.61$ (d, $1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.21(\mathrm{t}, 1 \mathrm{H}, J 7.8$ Hz), 4.12 (d, $2 \mathrm{H}, J 4.9 \mathrm{~Hz}$), 3.34 (s, 3 H), 2.44-2.38 (m, 1 H), 2.32-2.24 (m, 1 H$), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 132.1,128.0,112.2,109.4,86.5,85.4,83.3$, 63.4, 54.8, 37.8, 26.4, 24.9; MS (ESI) $m / z 267\left(\mathrm{M}^{+}+\mathrm{Na}\right.$),

213 ($\mathrm{M}^{+}-\mathrm{OMe}$); HRMS (FAB) Calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{m} / \mathrm{z}$ 244.1311. Found: $m / z 244.1319$.

Methyl 6,7-anhydro-5-deoxy-2,3-O-isopropylidene-L-glycero- β -d-allo-octofuranoside 5

To a suspension of powdered $4 \AA$ molecular sieves $(1.20 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-23^{\circ} \mathrm{C}$ were sequentially added $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$ $(0.28 \mathrm{~mL}, 0.95 \mathrm{mmol})$ and (+)-DET ($0.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) under a nitrogen atmosphere. The resulting mixture was stirred for 15 \min at $-23^{\circ} \mathrm{C}$ and a solution of alcohol $4(1.12 \mathrm{~g}, 4.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. The mixture was stirred for a further 15 min , and tert-butyl hydroperoxide ($2.8 \mathrm{~mL} ; 5 \mathrm{M}$ in n-decane) was added dropwise. The resulting mixture was stirred at $-23^{\circ} \mathrm{C}$ for 30 min and then put into a freezer at $-23^{\circ} \mathrm{C}$ for 24 h . After this period, aq. $\mathrm{NaOH}(4 \mathrm{M})$ buffered with $\mathrm{NaCl}(5 \mathrm{~mL})$ was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was filtered through a Celite pad, and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The resulting residue was chromatographed on silica gel (50% EtOAc-hexanes) to furnish the epoxide $5\left(R_{\mathrm{f}} 0.20,50 \%\right.$ EtOAc-hexanes) as a colorless oil ($1.05 \mathrm{~g}, 88 \%$); $[a]_{\mathrm{D}}^{23}-56.6$ (c 1.37, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.57$ (d, 1 H, J 5.9 Hz), $4.54(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J 8.5$, $6.0 \mathrm{~Hz}), 3.83(\mathrm{dd}, 1 \mathrm{H}, J 12.6,2.7 \mathrm{~Hz}), 3.58(\mathrm{dd}, 1 \mathrm{H}, J 12.6,4.5$ Hz), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.59$ (br s, 1 H), 1.99-1.91 (m, 1 H), 1.75-1.69 (m, 1 H), $1.42(\mathrm{~s}, 3 \mathrm{H}$), 1.26 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 112.4,109.5,85.3$, 84.2, 83.8, 61.5, 57.9, 54.8, 53.1, 36.5, 26.3, 24.8; MS (ESI) m / z $283\left(\mathrm{M}^{+}+\mathrm{Na}\right)\left(\right.$ Calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}:$ C, $55.33 ; \mathrm{H}, 7.75 \%$. Found: C, $55.60 ; \mathrm{H}, 7.67$).

Methyl 6-azido-5,6-dideoxy-2,3-O-isopropylidene-L-glycero- α-L-talo-octofuranoside 6
To a stirred solution of $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}_{4}(1.55 \mathrm{~mL}, 5.22 \mathrm{mmol})\right.$ in dry benzene (30 mL) was added $\mathrm{TMSN}_{3}(1.39 \mathrm{~mL}, 10.44 \mathrm{mmol})$. The resulting mixture was heated at $75^{\circ} \mathrm{C}$ for 12 h . After this period, a solution of epoxide $5(905 \mathrm{mg}, 3.48 \mathrm{mmol})$ in benzene $(3 \mathrm{~mL})$ was added at $75^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min , and the mixture was cooled to $23^{\circ} \mathrm{C}$. The reaction mixture was then concentrated under reduced pressure and the residue was diluted with THF (5 mL). Aq. potassium sodium tartrate ($20 \% ; 5 \mathrm{~mL}$) was added and the resulting mixture was stirred vigorously at $23^{\circ} \mathrm{C}$ for 2 h . After this period, the suspension was diluted with EtOAc (5 mL), filtered through Celite and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give a residue, which was chromatographed over silica gel (50% EtOAc-hexanes) to furnish an inseparable mixture of azido diols 6 and $7\left(R_{\mathrm{f}} 0.64\right.$, EtOAc; isomer ratio $95: 5$ by 400 MHz ${ }^{1} \mathrm{H}$ NMR) as a colorless oil ($1.03 \mathrm{~g}, 95 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J 5.9$ $\mathrm{Hz}), 4.36(\mathrm{dd}, 1 \mathrm{H}, J 11.5,3.3 \mathrm{~Hz}), 3.59-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{~s}$, $3 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.28$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 112.4,110.0,85.1,84.2$, 83.6, 73.9, 63.0, 61.3, 55.3, 35.4, 26.3, 24.8; MS (ESI) m/z 326 $\left(\mathrm{M}^{+}+\mathrm{Na}\right.$) (Calc. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 47.52; H, 6.98%. Found: C, 47.51; H, 7.02).

Methyl 6-(benzyloxycarbonylamino)-5,6-dideoxy-2,3-O-iso-propylidene-L-glycero-a-L-talo-octofuranoside 8

To a stirred solution of azide $\mathbf{6}(567 \mathrm{mg}, 1.87 \mathrm{mmol})$ in MeOH (7 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$. The resulting suspension was stirred under a hydrogen-filled balloon for 6 h . After this period, the mixture was filtered through a Celite pad, and the filter cake was washed thoroughly with EtOAc. Evaporation of
the filtrate gave a residue, which was dissolved in THF (5 mL), and $\mathrm{CbzCl}(0.32 \mathrm{~mL}, 2.25 \mathrm{mmol})$ followed by saturated aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ were added at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred at that temperature for 12 h . The mixture was diluted with water and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) . The organic layers were combined, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica gel chromatography (75% EtOAc-hexanes) to furnish $8\left(R_{\mathrm{f}} 0.43, \mathrm{EtOAc}\right)$ as a white solid ($694 \mathrm{mg}, 90 \%$), mp $140-142{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}+0.4$ (c 1.47, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{~d}, 1 \mathrm{H}, J 8.6 \mathrm{~Hz}), 5.10(\mathrm{dd}$, $2 \mathrm{H}, J 12.2,8.0 \mathrm{~Hz}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.54$ (d, 1 H, J 5.9 Hz), 4.41 (dd, $1 \mathrm{H}, J 12.2,2.5 \mathrm{~Hz}$), $3.88-3.80(\mathrm{~m}$, $1 \mathrm{H}), 3.68-3.62$ (m, 2 H), 3.52 (d, $1 \mathrm{H}, J 8.1 \mathrm{~Hz}$), 3.34 (s, 3 H), 2.95 (br s, 1 H), 1.78-2.04 (m, 3 H), 1.46 (s, 3 H), 1.30 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 157.3,136.1,128.5,128.2$, 128.0, 112.4, 110.4, 85.1, 84.6, 83.7, 73.0, 67.1, 62.9, 55.6, 50.1, 34.9, 26.4, 24.8; MS (ESI) m/z $434\left(\mathrm{M}^{+}+\mathrm{Na}\right), 379$ ($\mathrm{M}^{+}-\mathrm{OMe}$) (Calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{8}: \mathrm{C}, 58.38 ; \mathrm{H}, 7.10 ; \mathrm{N}$, 3.40%. Found: C, $58.13 ;$ H, 7.03 ; N, 3.39)

Methyl 6-(benzyloxycarbonylamino)-5,6,7,8-tetradeoxy-2,3-O-isopropylidene- α-L-talo-oct-7-enofuranoside 9

To a stirred suspension of $\mathbf{8}(694 \mathrm{mg}, 1.69 \mathrm{mmol})$ in a mixture (2:1) of toluene and acetonitrile (15 mL) at $23^{\circ} \mathrm{C}$ were added imidazole ($460 \mathrm{mg}, 6.76 \mathrm{mmol}$) and $\mathrm{Ph}_{2} \mathrm{PCl}(0.67 \mathrm{~mL}, 3.72$ mmol). The resulting mixture was stirred for 5 min and a solution of $\mathrm{I}_{2}(860 \mathrm{mg}, 3.38 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added dropwise. The resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 4 h . After this period, the mixture was cooled to $23^{\circ} \mathrm{C}$, diluted with EtOAc, and washed successively with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica gel chromatography ($25 \% \mathrm{EtOAc}$-hexanes) to furnish $9\left(R_{\mathrm{f}} 0.29\right.$, 25% EtOAc-hexanes) as a white solid ($442 \mathrm{mg}, 69 \%$), mp $107-108{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{23}+13\left(c 0.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (200 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.88-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, 1 \mathrm{H}$, $J 8.1 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J 18.6 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J 10.5 \mathrm{~Hz})$, $5.10(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}$, $J 5.9 \mathrm{~Hz}$), 4.43 (br s, 1 H), 4.32 (dd, $1 \mathrm{H}, J 10.8,4.1 \mathrm{~Hz}$), 3.33 (s, $3 \mathrm{H}), 1.97-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.29$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 155.6, 137.8, 136.5, $128.4,127.9,115.0,112.3,110.0,85.3,84.4,83.7,66.6,55.2$, 50.8, 39.2, 26.4, 24.9; MS (ESI) $m / z 400\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; HRMS (FAB) Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{6}: \mathrm{m} / \mathrm{z}, 377.1838$. Found: m / z, 377.1832 .

Methyl 6-[benzyl(benzyloxycarbonyl)amino]-5,6,7,8-tetradeoxy-2,3-O-isopropylidene- α-L-talo-oct- 7 -enofuranoside 10

To a stirred suspension of $\mathrm{NaH}(60 \%$ oil dispersion; 281 mg , $7.03 \mathrm{mmol})$ and $n-\mathrm{Bu}_{4} \mathrm{NI}(10 \mathrm{mg})$ in THF (3 mL) at $23^{\circ} \mathrm{C}$ was added a solution of the urethane $\mathbf{9}(442 \mathrm{mg}, 1.17 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h and benzyl bromide ($0.84 \mathrm{~mL}, 7.03 \mathrm{mmol}$) was added. The resulting reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with ethyl acetate. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by purification by silica gel chromatography (15% EtOAc-hexanes) gave the N-benzyl derivative $\mathbf{1 0}\left(R_{\mathrm{f}} 0.53,25 \% \mathrm{EtOAc}\right.$-hexanes) as a colorless oil ($546 \mathrm{mg}, 99 \%$), $[a]_{\mathrm{D}}^{23}-20.3$ (c $2.90, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO- $\left.d_{6} ; 70^{\circ} \mathrm{C}\right) \delta 7.36-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.93-5.85(\mathrm{~m}, 1 \mathrm{H})$, 5.18 (s, 2 H), 5.04 (dd, 1 H, J 9.7, 1.0 Hz), 5.00 (dd, $1 \mathrm{H}, J 17.4$, 1.0 Hz), $4.84(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.46(\mathrm{ABq}, 2 \mathrm{H}$, $\Delta v_{\mathrm{AB}} 88.3 \mathrm{~Hz}, J_{\mathrm{AB}} 15.8 \mathrm{~Hz}$), $4.43(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.41-4.37$ (m, 1 H), 3.94 (dd, 1 H, J 9.2, 5.7 Hz), 3.21 (s, 3 H), 2.02-1.95 $(\mathrm{m}, 1 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz; DMSO- $\left.d_{6} ; 70^{\circ} \mathrm{C}\right) \delta$ 156.6, 139.7, 138.2, 137.7, 129.1, 129.0, 128.6, 128.4, 128.0, 127.7, 117.1, 112.5, 110.1, $85.8,84.5,84.2,67.5,58.2,55.2,50.1,38.1,27.3,25.9$; MS (FAB) $m / z 468\left(\mathrm{M}^{+}+\mathrm{H}\right), 436$; HRMS (FAB) Calc. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{6}: m / z, 468.2386$. Found: $m / z 468.2390$.

Methyl 6-[benzyl(benzyloxycarbonyl)amino]-5,7-dideoxy-2,3-O-isopropylidene- $\boldsymbol{\alpha}$-L-talo-octofuranoside 11

To a stirred solution of the urethane $\mathbf{1 0}(276 \mathrm{mg}, 0.58 \mathrm{mmol})$ in THF (1 mL) at $23^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3}(1 \mathrm{M}$ solution in THF; $0.87 \mathrm{~mL}, 0.87 \mathrm{mmol})$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h . After this period, aqueous $4 \mathrm{M} \mathrm{NaOH}(0.3 \mathrm{~mL})$ followed by aq. $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.3 \mathrm{~mL})$ were added. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h . The mixture was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica gel chromatography to furnish alcohol $11\left(R_{\mathrm{f}} 0.42,50 \%\right.$ EtOAc-hexanes) as a colorless oil ($159 \mathrm{mg}, 57 \%$), $[a]_{\mathrm{D}}^{23}+19.9$ (c $1.58, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.38-7.25(\mathrm{~m}$, 10 H), 5.21 (s, 2 H), 4.95 (s, 2 H), 4.57 (d, $1 \mathrm{H}, J 5.8 \mathrm{~Hz}$), 4.44 (d, $1 \mathrm{H}, J 5.8 \mathrm{~Hz}), 4.35-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J 11.1,3.8$ Hz), 3.35 (s, 3 H), $3.40-3.27$ (m, 2 H), 1.69-1.62 (m, 4 H), 1.45 (s, 3 H), $1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 157.3$, $138.4,136.3,128.5,128.4,128.0,128.0,127.8,127.4,112.1$, $110.0,85.4,84.2,83.7,67.4,58.9,55.3,51.6,37.6,35.9,26.4$, 24.8; MS (FAB) $m / z 486\left(\mathrm{M}^{+}+\mathrm{H}\right), 454\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$; HRMS (FAB) Calc. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{7}: m / z$, 486.2492. Found: m / z, 486.2481 .

Ethyl \{methyl 9-acetamido-6-[benzyl(benzyloxycarbonyl)-amino]-5,6,7,8,9-pentadeoxy-2,3- O-isopropylidene- α-L-talo-dec-8-enofuranosid\}uronate 12 and 13

To a stirred solution of DMSO ($47 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added oxalyl chloride ($35 \mu \mathrm{~L}, 0.40$ mmol) dropwise. After 2 min , alcohol 11 ($121 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. The resulting mixture was stirred at -60 to $-50^{\circ} \mathrm{C}$ for 30 min and diisopropylethylamine ($0.24 \mathrm{~mL}, 1.33 \mathrm{mmol}$) was added dropwise. The resulting mixture was stirred at $-50^{\circ} \mathrm{C}$ for an additional 2 min and then allowed to warm to $23^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure, the residue was dissolved in ethyl acetate, and the organic layer was washed successively with cold aq. $\mathrm{NaHSO}_{4}(1 \mathrm{M})$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give the desired aldehyde. This was used directly without further purification in the following procedure.
To a stirred solution of N-acetyl- α-(diethoxyphosphory)glycine ethyl ester ($112 \mathrm{mg}, 0.4 \mathrm{mmol}$) and 18 -crown- $6(105 \mathrm{mg}$, $0.4 \mathrm{mmol})$ in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{KN}(\mathrm{TMS})_{2}$ ($0.74 \mathrm{~mL} ; 0.5 \mathrm{M}$ solution in toluene). The mixture was stirred for 15 min and then a solution of the above aldehyde in THF $(2 \mathrm{~mL})$ was added dropwise. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min then allowed to warm to $23^{\circ} \mathrm{C}$ and subsequently quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was diluted with EtOAc and water and the layers were separated. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography (60% EtOAc-hexanes) to give a mixture ($1: 5.4$) of inseparable enamides 12 and $13\left(R_{\mathrm{f}} 0.15\right.$, 50% EtOAc-hexanes) as a pale yellow oil ($121 \mathrm{mg}, 79 \%$); major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$; DMSO- $\left.d_{6} ; 70^{\circ} \mathrm{C}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H})$, $7.37-7.21(\mathrm{~m}, 10 \mathrm{H}), 6.21(\mathrm{t}, 1 \mathrm{H}, J 7.1 \mathrm{~Hz}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.82$ (s, 1 H$), 4.47(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.44\left(\mathrm{ABq}, 2 \mathrm{H}, \Delta v_{\mathrm{AB}} 59.8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AB}} 15.7 \mathrm{~Hz}\right), 4.36(\mathrm{~d}, 1 \mathrm{H}, J 5.9 \mathrm{~Hz}), 4.10(\mathrm{q}, 2 \mathrm{H}, J 7.0 \mathrm{~Hz})$, 4.03-4.01 (m, 1 H), 3.94 (dd, $1 \mathrm{H}, J 10.2,4.8 \mathrm{~Hz}$), 3.28 (s, 3H), 2.41 (t, $2 \mathrm{H}, J 7.2 \mathrm{~Hz}$), 1.98-1.88 (m, 1 H), 1.88 (s, 3 H), $1.64-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.21$ (s, 3 H), 1.17 (t, $3 \mathrm{H}, J 7.0 \mathrm{~Hz}$); MS (CI) $m / z 611\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Ethyl \{methyl 9-acetamido-6-[benzyl(benzyloxycarbonyl)-amino]-5,6,7,8,9-pentadeoxy-2,3-O-isopropylidene-d-glycero- α -L-talo-decofuranosid\}uronate 14
In a hydrogenation bottle, the mixture of enamides $\mathbf{1 2}$ and $\mathbf{1 3}$ $(14 \mathrm{mg}, 0.023 \mathrm{mmol})$ was dissolved in methanol (3 mL) and the catalyst $\left[\mathrm{Rh}(\mathrm{COD})(R, R \text {-DIPAMP })_{2}\right]^{+} \mathrm{BF}_{4}{ }^{-}(2 \mathrm{mg})$ was added. The bottle was then charged with hydrogen to a pressure of 50 psi. The mixture was shaken on a Parr apparatus for 12 h under 50 psi at $23^{\circ} \mathrm{C}$. After this period, the reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel chromatography (50% EtOAc-hexanes) to give $\mathbf{1 4}$ ($R_{\mathrm{f}} 0.16,50 \%$ EtOAc-hexanes) as a colorless oil ($13.3 \mathrm{mg}, 94 \%$), $[a]_{\mathrm{D}}^{23}+22.6\left(c 1.33, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.{ }^{8}[a]_{\mathrm{D}}^{23}+24.3\left(c 0.7, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ;$ DMSO- $d_{6} ; 70^{\circ} \mathrm{C}$) $\delta 7.85(\mathrm{~d}, 1 \mathrm{H}, J 7.3 \mathrm{~Hz}$), $7.20-7.39(\mathrm{~m}, 10 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}$, $J 5.9 \mathrm{~Hz}), 4.41\left(\mathrm{ABq}, 2 \mathrm{H}, \Delta v_{\mathrm{AB}} 81 \mathrm{~Hz}, J_{\mathrm{AB}} 15.7 \mathrm{~Hz}\right), 4.35(\mathrm{~d}, 1$ $\mathrm{H}, J 5.9 \mathrm{~Hz}), 4.17-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{q}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 3.94$ 3.91 (m, 2 H), 3.20 (s, 3 H), 1.82 (s, 3 H$), 1.70-1.41$ (m, 6 H$)$, $1.33(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, 3 \mathrm{H}, J 7.0 \mathrm{~Hz}) ;$ MS (ESI) m / z $635\left(\mathrm{M}^{+}+\mathrm{Na}\right), 581\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$.

Acknowledgements

Financial support of our work by the National Institute of Health (GM 55600) is gratefully acknowledged.

References

1 R. L. Hamil and M. M. Hoehn, J. Antibiot., 1973, 26, 463.
2 (a) R. J. Suhadolnik, Nucleotides as Biological Probes, Wiley, New York, 1979, pp. 19-23; (b) C. S. G. Pugh, R. T. Borchardt and H. O. Stone, J. Biol. Chem., 1978, 253, 4075 and references cited therein.
3 (a) M. T. McCamnon and L. W. Parks, J. Bacteriol., 1981, 145, 106; (b) R. W. Fuller and R. Nagarajan, Biochem. Pharmacol., 1978, 27, 1981 and references cited therein.
4 E. Zweygerth, D. Schillinger, W. Kaufmann and D. Roettcher, Trop. Med. Parasitol., 1986, 37, 255.
5 For synthetic studies, see; (a) Y. Mizuno, K. Tsuchida and H. Tampo, Chem. Pharm. Bull., 1984, 32, 2915; (b) A. R. Moorman,
T. Martin and R. T. Borchardt, Carbohydr. Res., 1983, 113, 233; (c) J. W. Lyga and J. A. Secrist, III, J. Org. Chem., 1983, 48, 1982.

6 For total synthesis, see; (a) D. H. R. Barton, S. D. Gero, B. QuicletSire and M. Samadi, J. Chem. Soc., Perkin Trans. 1, 1991, 983; (b) M. P. Maguire, P. L. Feldman and H. Rapoport, J. Org. Chem., 1990, 55, 948; (c) J. G. Buchanan, A. Flinn, P. H. Mundill and R. H. Wightman, Nucleosides, Nucleotides, 1986, 5, 313; (d) M. Geze, P. Blanchard, J. L. Fourrey and M. Robert-Gero, J. Am. Chem. Soc., 1983, 105, 7638; (e) G. A. Mock and J. G. Moffat, Nucleic Acids Res., 1982, 10, 6223.
7 For synthesis of sinefungin analogues, see; (a) D. H. R. Barton, S. D. Gero, F. Lawrence, M. Robert-Gero, B. Quiclet-Sire and M. Samadi, J. Med. Chem., 1992, 35, 63; (b) D. H. R. Barton, S. D. Gero, G. Negron, B. Quiclet-Sire, M. Samadi and C. Vincent, Nucleosides, Nucleotides, 1995, 14, 1619; (c) P. Peterli-Roth, M. P. Maguire, E. Leon and H. Rapoport, J. Org. Chem., 1994, 59, 4186.
8 A. K. Ghosh and W. Liu, J. Org. Chem., 1996, 61, 6175.
9 (a) A. K. Ghosh, S. P. McKee, W. M. Sanders, P. L. Darke, J. A. Zugay, E. A. Emini, W. A. Schleif, J. C. Quintero, J. R. Huff and P. S. Anderson, Drug Des. Discovery, 1993, 10, 77; (b) P. A. Levene and E. T. Stiller, J. Biol. Chem., 1934, 104, 299.

10 H. Kotsuki, I. Kadota and M. Ochi, Tetrahedron Lett., 1990, 31, 4609.

11 (a) R. A. Johnson and K. B. Sharpless, in Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH Publishers, New York, 1993, pp. 103158; (b) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765.

12 A. K. Ghosh and Y. Wang, J. Org. Chem., 1999, 64, 2789.
13 M. Caron, P. R. Carlier and K. B. Sharpless, J. Org. Chem., 1988, 53, 5185.

14 Z. Liu, B. Classon and B. Samuelsson, J. Org. Chem., 1990, 55, 4273.

15 U. Schmidt, A. Lieberknecht and J. Wild, Synthesis, 1984, 53.
16 J. W. Scott, D. D. Keith, G. Nix, Jr., D. R. Parrish, S. Remington, G. P. Roth, J. M. Townsend, D. Valentine, Jr. and R. Yang, J. Org. Chem., 1981, 46, 5086.
17 (a) W. S. Knowles, M. J. Sabacky, B. D. Vineyard and D. J. Weinkauff, J. Am. Chem. Soc., 1975, 97, 2567; (b) B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946.

[^0]: $\dagger[\alpha]_{\mathrm{D}}$-Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$.

